RQA metrics
C/C++
-
void accrqa_print_error(Accrqa_Error *error)
Prints error messages associated with error status.
- Parameters:
error – Error status to print.
-
void accrqa_version()
Prints accrqa version.
-
void accrqa_LAM(float *output, float *input_data, size_t data_size, int *tau_values, int nTaus, int *emb_values, int nEmbs, int *vmin_values, int nVmins, float *threshold_values, int nThresholds, Accrqa_Distance distance_type, int calc_ENTR, Accrqa_CompPlatform comp_platform, Accrqa_Error *error)
Calculates LAM, TT, TTmax, ENTR and RR RQA metrics from supplied time-series. (float)
Array dimensions are as follows, from slowest to fastest varying:
output
is 3D data cube containing RR values, with shape:[
nTaus
,nEmbs
,nLmins
,nThresholds
, 5 ].
input_data
is 1D and real-valued, with shape:[
data_size
]
tau_values
is 1D and integer-valued, with shape:[
nTaus
]
emb_values
is 1D and integer-valued, with shape:[
nEmbs
]
lmin_values
is 1D and integer-valued, with shape:[
nEmbs
]
threshold_values
is 1D and real-valued, with shape:[
nThresholds
]
- Parameters:
output – Multi-dimensional data cube containing RR values.
input_data – Real-valued array of input time-series samples.
data_size – Number of samples (float) of the time-series.
tau_values – Integer array of delay values.
nTaus – Number of delays.
emb_values – Integer array of embedding values.
nEmbs – Number of embeddings.
vmin_values – Integer array of minimal lengths values.
nVmins – Number of minimal lengths.
threshold_values – Real-valued array (float) of threshold values.
nThresholds – Number of threshold values.
distance_type – Distance formula used in calculation of distance to the line of identity.
calc_ENTR – Turns calculation of ENTR on (1) and off (0).
comp_platform – Compute platform to use.
error – Error status.
-
void accrqa_LAM(double *output, double *input_data, size_t data_size, int *tau_values, int nTaus, int *emb_values, int nEmbs, int *vmin_values, int nVmins, double *threshold_values, int nThresholds, Accrqa_Distance distance_type, int calc_ENTR, Accrqa_CompPlatform comp_platform, Accrqa_Error *error)
Calculates LAM, TT, TTmax, ENTR and RR RQA metrics from supplied time-series. (double)
Array dimensions are as follows, from slowest to fastest varying:
output
is 3D data cube containing RR values, with shape:[
nTaus
,nEmbs
,nLmins
,nThresholds
, 5 ].
input_data
is 1D and real-valued, with shape:[
data_size
]
tau_values
is 1D and integer-valued, with shape:[
nTaus
]
emb_values
is 1D and integer-valued, with shape:[
nEmbs
]
lmin_values
is 1D and integer-valued, with shape:[
nEmbs
]
threshold_values
is 1D and real-valued, with shape:[
nThresholds
]
- Parameters:
output – Multi-dimensional data cube containing RR values.
input_data – Real-valued array of input time-series samples.
data_size – Number of samples (double) of the time-series.
tau_values – Integer array of delay values.
nTaus – Number of delays.
emb_values – Integer array of embedding values.
nEmbs – Number of embeddings.
vmin_values – Integer array of minimal lengths values.
nVmins – Number of minimal lengths.
threshold_values – Real-valued array (double) of threshold values.
nThresholds – Number of threshold values.
distance_type – Distance formula used in calculation of distance to the line of identity.
calc_ENTR – Turns calculation of ENTR on (1) and off (0).
comp_platform – Compute platform to use.
error – Error status.
-
int accrqa_LAM_output_size_in_elements(int nTaus, int nEmbs, int nVmins, int nThresholds)
Calculates size of LAM output array in number of elements.
- Parameters:
nTaus – Number of delays.
nEmbs – Number of embeddings.
nVmins – Number of minimal lengths.
nThresholds – Number of threshold values.
-
void accrqa_DET(float *output, float *input_data, size_t data_size, int *tau_values, int nTaus, int *emb_values, int nEmbs, int *lmin_values, int nLmins, float *threshold_values, int nThresholds, Accrqa_Distance distance_type, int calc_ENTR, Accrqa_CompPlatform comp_platform, Accrqa_Error *error)
Calculates DET, L, Lmax, ENTR and RR RQA metrics from supplied time-series. (float)
Array dimensions are as follows, from slowest to fastest varying:
output
is 3D data cube containing RR values, with shape:[
nTaus
,nEmbs
,nLmins
,nThresholds
, 5 ].
input_data
is 1D and real-valued, with shape:[
data_size
]
tau_values
is 1D and integer-valued, with shape:[
nTaus
]
emb_values
is 1D and integer-valued, with shape:[
nEmbs
]
lmin_values
is 1D and integer-valued, with shape:[
nEmbs
]
threshold_values
is 1D and real-valued, with shape:[
nThresholds
]
- Parameters:
output – Multi-dimensional data cube containing RR values.
input_data – Real-valued array of input time-series samples.
data_size – Number of samples (float) of the time-series.
tau_values – Integer array of delay values.
nTaus – Number of delays.
emb_values – Integer array of embedding values.
nEmbs – Number of embeddings.
lmin_values – Integer array of minimal lengths values.
nLmins – Number of minimal lengths.
threshold_values – Real-valued array (float) of threshold values.
nThresholds – Number of threshold values.
distance_type – Distance formula used in calculation of distance to the line of identity.
calc_ENTR – Turns calculation of ENTR on (1) and off (0).
comp_platform – Compute platform to use.
error – Error status.
-
void accrqa_DET(double *output, double *input_data, size_t data_size, int *tau_values, int nTaus, int *emb_values, int nEmbs, int *lmin_values, int nLmins, double *threshold_values, int nThresholds, Accrqa_Distance distance_type, int calc_ENTR, Accrqa_CompPlatform comp_platform, Accrqa_Error *error)
Calculates DET, L, Lmax, ENTR and RR RQA metrics from supplied time-series. (double)
Array dimensions are as follows, from slowest to fastest varying:
output
is 3D data cube containing RR values, with shape:[
nTaus
,nEmbs
,nLmins
,nThresholds
, 5 ].
input_data
is 1D and real-valued, with shape:[
data_size
]
tau_values
is 1D and integer-valued, with shape:[
nTaus
]
emb_values
is 1D and integer-valued, with shape:[
nEmbs
]
lmin_values
is 1D and integer-valued, with shape:[
nEmbs
]
threshold_values
is 1D and real-valued, with shape:[
nThresholds
]
- Parameters:
output – Multi-dimensional data cube containing RR values.
input_data – Real-valued array of input time-series samples.
data_size – Number of samples (double) of the time-series.
tau_values – Integer array of delay values.
nTaus – Number of delays.
emb_values – Integer array of embedding values.
nEmbs – Number of embeddings.
lmin_values – Integer array of minimal lengths values.
nLmins – Number of minimal lengths.
threshold_values – Real-valued array (double) of threshold values.
nThresholds – Number of threshold values.
distance_type – Distance formula used in calculation of distance to the line of identity.
calc_ENTR – Turns calculation of ENTR on (1) and off (0).
comp_platform – Compute platform to use.
error – Error status.
-
int accrqa_DET_output_size_in_elements(int nTaus, int nEmbs, int nLmins, int nThresholds)
Calculates size of DET output array in number of elements.
- Parameters:
nTaus – Number of delays.
nEmbs – Number of embeddings.
nLmins – Number of minimal lengths.
nThresholds – Number of threshold values.
-
void accrqa_RR(float *output, float *input_data, size_t data_size, int *tau_values, int nTaus, int *emb_values, int nEmbs, float *threshold_values, int nThresholds, Accrqa_Distance distance_type, Accrqa_CompPlatform comp_platform, Accrqa_Error *error)
Calculates RR RQA metric from supplied time-series. (float)
Array dimensions are as follows, from slowest to fastest varying:
output
is 3D data cube containing RR values, with shape:[
nTaus
,nEmbs
,nThresholds
].
input_data
is 1D and real-valued, with shape:[
data_size
]
tau_values
is 1D and integer-valued, with shape:[
nTaus
]
emb_values
is 1D and integer-valued, with shape:[
nEmbs
]
threshold_values
is 1D and real-valued, with shape:[
nThresholds
]
- Parameters:
output – Multi-dimensional data cube containing RR values.
input_data – Real-valued array of input time-series samples.
data_size – Number of samples (float) of the time-series.
tau_values – Integer array of delay values.
nTaus – Number of delays.
emb_values – Integer array of embedding values.
nEmbs – Number of embeddings.
threshold_values – Real-valued array (float) of threshold values.
nThresholds – Number of threshold values.
distance_type – Distance formula used in calculation of distance to the line of identity.
comp_platform – Compute platform to use.
error – Error status.
-
void accrqa_RR(double *output, double *input_data, size_t data_size, int *tau_values, int nTaus, int *emb_values, int nEmbs, double *threshold_values, int nThresholds, Accrqa_Distance distance_type, Accrqa_CompPlatform comp_platform, Accrqa_Error *error)
Calculates RR RQA metric from supplied time-series. (double)
Array dimensions are as follows, from slowest to fastest varying:
output
is 3D data cube containing RR values, with shape:[
nTaus
,nEmbs
,nThresholds
].
input_data
is 1D and real-valued, with shape:[
data_size
]
tau_values
is 1D and integer-valued, with shape:[
nTaus
]
emb_values
is 1D and integer-valued, with shape:[
nEmbs
]
threshold_values
is 1D and real-valued, with shape:[
nThresholds
]
- Parameters:
output – Multi-dimensional data cube containing RR values.
input_data – Real-valued array of input time-series samples.
data_size – Number of samples (double) of the time-series.
tau_values – Integer array of delay values.
nTaus – Number of delays.
emb_values – Integer array of embedding values.
nEmbs – Number of embeddings.
threshold_values – Real-valued array (double) of threshold values.
nThresholds – Number of threshold values.
distance_type – Distance formula used in calculation of distance to the line of identity.
comp_platform – Compute platform to use.
error – Error status.
-
int accrqa_RR_output_size_in_elements(int nTaus, int nEmbs, int nThresholds)
Calculates size of RR output array in number of elements.
- Parameters:
nTaus – Number of delays.
nEmbs – Number of embeddings.
nThresholds – Number of threshold values.
Python
- accrqa.RR(input_data, tau_values, emb_values, threshold_values, distance_type, comp_platform='nv_gpu', tidy_data=False)
Calculates RR metric from supplied time-series. https://en.wikipedia.org/wiki/Recurrence_quantification_analysis
- Parameters:
input_data – The input time-series.
tau_values – Array of delays.
emb_values – Array of embedding values.
threshold_values – Array of threshold values.
distance_type – Type of formula used to calculate distance to line of identity.
comp_platform – [Optional] Computational platform to be used. Default is cpu.
tidy_data – [Optional] Output data in tidy data format. Requires pandas.
- Returns:
A numpy NDArray containing of RR values with dimensions [number of delays, number of embeddings, number of thresholds].
- Raises:
TypeError – If number of delays, embedding or thresholds is zero length.
TypeError – If input_data is not numpy.ndarray.
TypeError – If wrong type of the distance to the line of identity is selected.
TypeError – If wrong computational platform is selected.
RuntimeError – If AccRQA library encounters a problem.
- accrqa.LAM(input_data, tau_values, emb_values, vmin_values, threshold_values, distance_type, calculate_ENTR, comp_platform='nv_gpu', tidy_data=False)
Calculates DET, L, Lmax, ENTR and RR metrics from supplied time-series. https://en.wikipedia.org/wiki/Recurrence_quantification_analysis
- Parameters:
input_data – The input time-series.
tau_values – Array of delays.
emb_values – Array of embedding values.
vmin_values – Array of minimal lengths.
threshold_values – Array of threshold values.
distance_type – Type of formula used to calculate distance to line of identity.
comp_platform – [Optional] Computational platform to be used. Default is cpu.
tidy_data – [Optional] Output data in tidy data format. Requires pandas.
- Returns:
A numpy NDArray containing of RR values with dimensions [number of delays, number of embeddings, number of thresholds].
- Raises:
TypeError – If number of delays, embedding, minimal lengths or thresholds is zero length.
TypeError – If input_data is not numpy.ndarray.
TypeError – If wrong type of the distance to the line of identity is selected.
TypeError – If wrong computational platform is selected.
RuntimeError – If AccRQA library encounters a problem.
- accrqa.DET(input_data, tau_values, emb_values, lmin_values, threshold_values, distance_type, calculate_ENTR, comp_platform='nv_gpu', tidy_data=False)
Calculates DET, L, Lmax, ENTR and RR metrics from supplied time-series. https://en.wikipedia.org/wiki/Recurrence_quantification_analysis
- Parameters:
input_data – The input time-series.
tau_values – Array of delays.
emb_values – Array of embedding values.
lmin_values – Array of minimal lengths.
threshold_values – Array of threshold values.
distance_type – Type of formula used to calculate distance to line of identity.
comp_platform – [Optional] Computational platform to be used. Default is cpu.
tidy_data – [Optional] Output data in tidy data format. Requires pandas.
- Returns:
A numpy NDArray containing of RR values with dimensions [number of delays, number of embeddings, number of thresholds].
- Raises:
TypeError – If number of delays, embedding, minimal lengths or thresholds is zero length.
TypeError – If input_data is not numpy.ndarray.
TypeError – If wrong type of the distance to the line of identity is selected.
TypeError – If wrong computational platform is selected.
RuntimeError – If AccRQA library encounters a problem.